Hurricane Evacuation vs. Shelter-in-Place for Nursing Homes: Impact of Katrina and Other Recent Storms on Decision Making

SSPEED Conference
October 30, 2008

Marc L. Levitan, Ph.D.
Director, LSU Hurricane Center

Jason Fennell, BSCE
Graduate Research Assistant, LSU Hurricane Center
Katrina’s Impacts on Nursing Homes

• Insufficient communication, supplies, evacuation plans

• St Rita’s Nursing Home
 – 34 residents perished

• Lafon Nursing Home
 – 22 residents perished due to lack of electricity and supplies

Source: Boston Globe
Hurricane Rita Evacuation Casualties

• Bus transporting nursing home evacuees caught fire
 – 23 casualties
• 18 additional casualties of nursing home residents from stress of evacuation
• Long evacuation times in the greater Houston area
Evacuation Issues

- Logistics
 - Long lead times needed to acquire transportation
 - Contingencies if planned transportation becomes unavailable
- Long potential evacuation times
 - Partially eliminated by staged evacuations and Contraflow
- Vulnerability of residents
 - Heat exhaustion
 - Medical needs
Shelter in Place Issues

- Structural Safety
- Staff availability
- Supplies
- Potential isolation
 - Blocked access roads
- Loss of power
 - Possibly for extended time period
- Potential loss of other utilities
 - Water, Gas, Communication
Changes in Emergency Planning

• Before Hurricanes Katrina and Rita
 – Many evacuation plans inadequate or non-existent
• Emergency (evacuation) planning process was rethought
Changes in Emergency Planning

• New evacuation planning requirements were mandated in Louisiana
• Act 540 detailed new guidelines for emergency plans
• Nursing homes must evacuate in a mandatory evacuation
Changes in Emergency Planning

• Nursing homes must have a yearly evacuation plan approved by DHH which include:
 – Verified shelter site outside area of risk
 – Proof of transportation
 – Proof of staffing ability, including contacts

• DHH will coordinate transportation of medically complex residents or in the event that transportation becomes unavailable

• Evacuate when in cone of error?
Consider Evacuation?

- Forecast as strong Category 4 at 120 hour (5 day) forecast

Source: National Hurricane Center (NHC)
Consider Evacuation?

- Eventual landfall in Southern Mexico as Cat. 5
Changes in Emergency Planning

• National Criteria for Evacuation Decision-Making in Nursing Homes
 – Developed by Florida Health Care Association and University of South Florida
• General decision-making criteria
• In continuous development
Shelter in Place Studies

• Performed shelter in place studies for DHH
 – Reviewed 45 nursing home facilities
 – Trained DHHS personnel to perform site surveys

• Based off of Least Risk Decision Making (LRDM) methodology
Shelter in Place Studies

- LRDM summarizes sheltering criteria into 15 areas of flood, hazmat, and structural risk
- Data from the 15 criteria are analyzed and categorized as either:
 - Preferred
 - Less Preferred/Marginal
 - Further Investigation/Mitigation Required
- Criteria categorized Further Investigation/Mitigation are the most serious concerns
Shelter in Place Studies

- Aerial analysis of facility site

Source: Google Maps
Shelter in Place Studies

• Facility walk-through and on-site investigation
Shelter in Place Studies

- Rainfall and storm surge flooding analysis
<table>
<thead>
<tr>
<th>Shelter in Place Studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferred</td>
</tr>
<tr>
<td>Storm Surge Inundation</td>
</tr>
<tr>
<td>Rainfall Flooding</td>
</tr>
<tr>
<td>Hazmat and Nuclear</td>
</tr>
<tr>
<td>Lay-down Hazard</td>
</tr>
<tr>
<td>Wind and Debris Exposure</td>
</tr>
<tr>
<td>Wind Design Verification</td>
</tr>
<tr>
<td>Construction Type/Loadpath</td>
</tr>
<tr>
<td>Building Condition</td>
</tr>
<tr>
<td>Exterior Wall Construction</td>
</tr>
<tr>
<td>Window Protection</td>
</tr>
<tr>
<td>Roof Construction/Slope</td>
</tr>
<tr>
<td>Roof Drainage/Ponding</td>
</tr>
<tr>
<td>Interior Safe Space</td>
</tr>
<tr>
<td>Emergency Access</td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/ Marginal</th>
<th>Needs Further Investigation/ Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storm Surge Inundation</td>
<td></td>
<td>-Dry for TS, Cat 1, Cat 2</td>
<td>- Subject to inundation from Cat 3 and higher</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Emergency roof access</td>
<td>- Isolated access routes from surge flooding</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>100-year flood event, rainfall</th>
<th>Hurricane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABFEc</td>
<td>Cat 1</td>
</tr>
<tr>
<td>1st Floor</td>
<td>2.6</td>
<td>DRY</td>
</tr>
<tr>
<td>2nd Floor</td>
<td>DRY</td>
<td>DRY</td>
</tr>
<tr>
<td>3rd Floor</td>
<td>DRY</td>
<td>DRY</td>
</tr>
<tr>
<td>Roof</td>
<td>DRY</td>
<td>DRY</td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/Marginal</th>
<th>Needs Further Investigation/Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rainfall Flooding/ Dam Considerations</td>
<td></td>
<td>- Subject to isolation from 100-yr flood</td>
<td>- Possible flooding from levee breach</td>
</tr>
<tr>
<td>Hazmat and Nuclear Power Plan Considerations</td>
<td>- Not located within 10 EPZ of nuclear power plant</td>
<td>- Located within precautionary zone for facilities manufacturing hazardous materials</td>
<td>- Further review needed to determine specific chemicals or hazardous materials</td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/ Marginal</th>
<th>Needs Further Investigation/ Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lay-down Hazard Exposure</td>
<td>- Not exposed to lay-down hazard (facility and access routes)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind and Debris Exposure</td>
<td>- Building located in sheltered area</td>
<td>- Potential debris source within 300 feet from neighboring residential structures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- No significant debris source within 300 feet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wind Design Verification</td>
<td></td>
<td></td>
<td>- Design Documentation unavailable</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/ Marginal</th>
<th>Needs Further Investigation/ Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction Type / Loadpath Verification</td>
<td>- Reinforced concrete frame with steel frame roof</td>
<td></td>
<td>- Loadpath could not be verified visually. Structural plans unavailable</td>
</tr>
<tr>
<td>Building Condition</td>
<td>- Structure is in good condition with no observable deterioration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exterior Wall Construction</td>
<td></td>
<td></td>
<td>- Masonry with brick veneer. Reinforcement unknown</td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/Marginal</th>
<th>Needs Further Investigation/Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Window Protection</td>
<td></td>
<td></td>
<td>- Unprotected window and door assemblies not certified to withstand debris impact</td>
</tr>
</tbody>
</table>

- Easy mitigation
- Significantly improves overall facility safety
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/Marginal</th>
<th>Needs Further Investigation/Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roof Construction/Slope</td>
<td></td>
<td></td>
<td>- Structural metal deck of unknown thickness and fill</td>
</tr>
<tr>
<td>Roof Open Span</td>
<td>-Max span less than 40 feet in shelter areas</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roof Drainage/Ponding</td>
<td>-No roof drainage confining parapets or curbs</td>
<td>-No evidence of ponding</td>
<td></td>
</tr>
</tbody>
</table>
Shelter in Place Studies

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Preferred</th>
<th>Less Preferred/Marginal</th>
<th>Needs Further Investigation/Mitigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interior Safe Space</td>
<td></td>
<td>- Interior masonry walls extend to upper floor or roof decking</td>
<td>- Unknown reinforcing in masonry walls</td>
</tr>
<tr>
<td>Emergency Access</td>
<td>- Potential shelter areas have access to flat roof via stairway to roof penthouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Shelter in Place Studies
Hurricane Gustav Evacuation

• Large-scale evacuation
 – 500-600 medical patients sent out of state
 – 8200 residents from 92 nursing homes evacuated

• Evacuation Issues
 – Many individual nursing home evacuation plans fell through
 – DHH stepped in with helicopter transportation

• 28 casualties from excess stress
Gustav – Outside Evacuation Zone

- Rapids Regional Medical Center
 - Located in Alexandria, Louisiana
 - Heavy rainfall from Hurricane Gustav caused extensive flooding in basement

Source: HCA Delta Division Hospital Network
Gustav – Outside Evacuation Zone

- Rainwater entered air handler room, electric room, and water system
- Loss of electric and water
- Replacement of transformers and steam generator required

Source: HCA Delta Division Hospital Network
Changes in Emergency Planning

- Additional changes proposed for 2009
- Logistics very difficult for large-scale evacuation
 - Consider shelter in place options for non-coastal nursing homes
- Risk assessment conducted to determine suitability for shelter in place
 - Nursing Facility Minimum Licensing Standards Emergency Preparedness (LAC 48:I.9729)
Future of Evacuation/Shelter Decision Making

• Large uncertainties in current decision process
 – Hurricane track and intensity forecast
 – Small changes in track and intensity greatly affect local conditions

• Should be accounted for and quantified in the decision making process
Future of Evacuation/Shelter Decision Making

- Probabilistic approach better quantifies uncertainty
- Provides more quantifiable information on likely storm hazards and the exposure of a population to these hazards
Future of Evacuation/Shelter Decision Making

- Considering forecast uncertainties provides more quantifiable risk-based decisions
- Hurricane landfall, wind speed, and storm surge flooding can be combined with life-safety and structural fragility curves

Source: HAZUS
Future of Evacuation/Shelter Decision Making

• Provides ability to quantify risk to a population from an approaching storm
• Risks from evacuation and sheltering in place can be compared
• Information-driven decision can be made

1. Calculate expected storm surge flooding for approaching hurricane
2. Determine timeline for onset of flooding and rise-rate
3. Calculate probable flood depth and wave environment for study-site
4. Determine physical structure and population vulnerabilities
5. Based on exposed population, make evacuation/shelter decision
Hurricane Evacuation vs. Shelter-in-Place for Nursing Homes: Impact of Katrina and Other Recent Storms on Decision Making

QUESTIONS?

Marc L. Levitan, PhD
levitan@hurricane.lsu.edu
(225) 578-4445

Jason Fennell, BSCE
jfenne2@lsu.edu
(225) 578-8466